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Weakly Structured Information

big data uncertainty, e.g., imprecise, error-prone, missing, conflicting,
partial information

non-standard data structures, e.g. partial ranking, multi attribute

inexplicable, e.g. black box based
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Preliminaries and Disclaimer

Slides are available, just write to augustin@stat.uni-muenchen.de.

many topics touched, invitation to co-operate and exchange

Some statements will be formulated in a sharp, programmatic and
sometimes even provocative manner in order to hopefully stimulate
discussions. Such statements should by no means be misunderstood
as a devaluation of the work of others.

limited to statistics as learning from data, no data production
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Complex Uncertainty

Be serious about the uncertainties involved!

Statistics: learn from data and quantify uncertainty of conclusions by
applying probability theory

self-evident?

questioned (outside statistics?)
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Complex Uncertainty

Statistics as inverted probability theory

?

6

statisticsprobability theory

DGP model

data
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Complex Uncertainty

Representing Uncertain Knowledge

Klir and Wierman (1998, Uncertainty-based Information, Physika, p. 1)

“For three hundred years [...] uncertainty was conceived solely in
terms of probability theory. This seemingly unique connection be-
tween uncertainty and probability is now challenged [... by several
other] theories, which are demonstrably capable of characterizing
situations under uncertainty. [...]

[...] it became clear that there are several distinct types of uncer-
tainty. That is, it was realized that uncertainty is a multidimen-
sional concept [bold: TA]. [.... That] multidimensional nature of
uncertainty was obscured when uncertainty was conceived solely
in terms of [traditional [added: TA]] probability theory, in which
it manifested by only one of its dimensions”.
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Complex Uncertainty

Uncertainty in Machine Learning

“The notion of uncertainty is of major importance in machine
learning and constitutes a key element of modern machine learn-
ing methodology. [...] Indeed, while uncertainty has long been
perceived as almost synonymous with standard probability and
probabilistic predictions, recent research has gone beyond tradi-
tional approaches and also leverages more general formalisms and
uncertainty calculi.”

Destercke & Hüllermeier (2020, Web page of ECML/PKDD 2020 Tutorial
and Workshop on Uncertainty in Machine Learning) 1

1
https://sites.google.com/view/wuml-2020/ [Nov 29th, 2021]
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Complex Uncertainty

Projection

. . . “[.... That] multidimensional nature of uncertainty was obscured when

uncertainty was conceived solely in terms of [traditional [added: TA]] probability

theory, in which it manifested by only one of its dimensions” . . .

All points on the same light beam result in the same point on the
projection surface.
Although actually different, they are indistinguishable on the
low-dimensional projection surface.

2

2
https://commons.wikimedia.org/wiki/File:Gobo_projected_illustration.png, Jeremy Kemp, free [Nov 23rd,

2021]
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Complex Uncertainty

Complex Uncertainty

Ideal stochasticity/ risk 
Sampling uncertainty

Classical Probability

AGMG Learning from Weakly Structured Information 13 / 65



Complex Uncertainty

Complex Uncertainty

Complex Uncertainty

Ideal stochasticity/ risk 
Sampling uncertainty

Classical Probability

Model Imprecision 
(Ambiguity/Knightian 

Uncertainty)

Imprecise Probabilities

Set of Models

AGMG Learning from Weakly Structured Information 14 / 65



Complex Uncertainty

Knightian Uncertainty, Ambiguity: Ellsberg’s “paradox”

Are all uncertainties risks? Knight (1921)

Ellsberg (1961, Quart.J.Econ): thought experiments among
prominent statisticians and econometricians

drawing balls from urns, partially under ambiguity

majority violates the additivity axiom of classical probability and
judges this as rational behavior

Ð→ “Decision theory beyond expected utility”

3 Google scholar search: [Nov 24th, 2021]

3https://www.amazon.de/Most-Dangerous-Man-America-Ellsberg/dp/B00329PYGQ
[Nov 24th, 2021]
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Complex Uncertainty

Ambiguity in Decision Making – Empirical Evidence

Figure: Hsu, Bhatt, Adolphs, Tranel & Camerer (2005, Science): Functional brain
imaging corroborates Ellsberg’s findings on the constitutive role of ambiguity in
decision making.
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Complex Uncertainty

Ambiguity and Non-additivity

often non-divisible evidence: high certainty for compound event, but
low certainty for each of the components

Bavarian or Austrian?
“Clearly a liver disease, but which one?”
compare later: yet undecided voters

(relative certainty in A ∪B) >> (r. c. in A) + (r. c. in B)
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Complex Uncertainty

Statistics as inverted probability theory (again)

?

6

statisticsprobability theory

DGP model
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uncertainty -
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Complex Uncertainty

Different Kinds of Uncertainty

Total Survey Error (TSE) concept: Groves & Lyberg (2010, Public
Opinion Quarterly)

learning from data as Chinese whispers game

sampling uncertainty

“big data uncertainty”: does not vanish with increasing sample size
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Complex Uncertainty

The two-layers perspective

ideal Yi
� effects � ideal Xi

? ?

? ?

6

data - inference � data

deficiency model deficiency model

observable Y∗i observable X∗i
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Complex Uncertainty

Manski’s Law of Decreasing Credibility

Credibility ?
“The credibility of inference decreases
with the strength of the assumptions
maintained.” (Manski (2003, p. 1))

partial identification: Set of all
models compatible with the data and
tenable assumptions.

Charles Manski4

4
http://faculty.wcas.northwestern.edu/~cfm754/; [Nov 22nd, 2021]
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Complex Uncertainty

Imprecision in statistics

– hide/neglect imprecision!

– model imprecision away!

!! Take imprecision into account in a reliable way!

!! imprecision as a modelling tool
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Complex Uncertainty

Quality of Information

“Let’s Be Imprecise in Order to Be Precise
(About What We Don’t Know)”
Gong & Meng (2021, Statistical Science (Re-
joinder), p. 210)

Xiao-Li Meng5

5
https://statistics.fas.harvard.edu/people/xiao-li-meng; Nov 21st, 2021
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Imprecise Probabilities/Partial Identification in a Nutshell

Imprecise probability (IP) in a nutshell I

unfortunate misnomer: actually IP claims to provide more precise
(better) models

uncertainty as a multidimensional concept

theoretical foundations: Walley (1991, Chapman & Hall),
Weichselberger (2001, Physika)

intros: e.g. Augustin, Coolen, de Cooman, Troffaes (2014, eds,
Wiley), (“ITIP”), Bradley (2019, Stanford Encyc. Phil)

here: build simply on a very intuitive understanding
from 1999 onwards biannual: ISIPTA: International Symposium on
Imprecise Probabilities: Theories and Applications, www.sipta.org

EVERITT
LANDAU
LEESE
STAHL

C
luster A

nalysis  5th Edition

Cluster Analysis  5th Edition
Brian S. Everitt, Sabine Landau, Morven Leese and Daniel Stahl
King’s College London, UK 

Cluster analysis comprises a range of methods for classifying multivariate 
data into subgroups. By organizing multivariate data into such subgroups, 
clustering can help reveal the characteristics of any structure or patterns 
present. These techniques have proven useful in a wide range of areas 
such as medicine, psychology, market research and bioinformatics.  

This 5th edition of the highly successful Cluster Analysis includes coverage 
of the latest developments in the field and a new chapter dealing with finite 
mixture models for structured data. 

Real life examples are used throughout to demonstrate the application 
of the theory, and figures are used extensively to illustrate graphical 
techniques. The book is comprehensive yet relatively non-mathematical, 
focusing on the practical aspects of cluster analysis. 

Key Features:

•  Presents a comprehensive guide to clustering techniques, with focus 
on the practical aspects of cluster analysis.

•  Provides a thorough revision of the fourth edition, including new 
developments in clustering longitudinal data and examples from 
bioinformatics and gene studies.

•  Updates the chapter on mixture models to include recent developments 
and presents a new chapter on mixture modelling for structured data.

Practitioners and researchers working in cluster analysis and data analysis 
will benefit from this book.

Red box rules are for proof stage only. Delete before final printing.

WILEY SERIES IN PROBABILITY AND STATISTICS

Introduction to
Imprecise Probabilities

Edited by
Thomas Augustin   Frank P. A. Coolen

Gert de Cooman   Matthias C. M. Troffaes 

more m
bleed b
neededn
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Imprecise Probabilities/Partial Identification in a Nutshell

Brief Digression: Kurt Weichselberger (1929-2016)

HiStaLMU Project; Augustin & Seising (2018, IJAR)

1968 Rector inaugural speech Berlin: interval-valued
probabilities to resolve Fisher’s fiducial argument

1974 Foundation of the Institute of Statistics and
Philosophy of Science at LMU

1979 First Diploma Programme in Statistics

1991 With S. Pöhlmann: “A Methodology for
Uncertainty in Knowledge-based Systems”,
Springer LN in AI

2001 “Elementare Grundbegriffe einer allgemeineren
Wahrscheinlichkeitsrechnung I”, Physika

–2015 Work on the third volume on (interval-valued)
logical probability

6

6Photo kindly provided by Weichselberger’s family
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Imprecise Probabilities/Partial Identification in a Nutshell

Imprecise probability (IP) in a nutshell II

sets of traditional probability models (credal sets) as the basic entity

“⇐⇒”
interval-valued probability P(A) = (︀L(A),U(A)⌋︀ of events A

quality of information: “size of set”, width of interval

traditional probability as the extreme case of perfect probabilistic
information, real number, set with a single element
P(A)=[0;1] for all nontrivial events – set of all probability measures:
complete ignorance, full ambiguity

several updating/conditioning rules: here GBR only → conditioning
element by element → Robust Bayes

L(⋅) and U(⋅) are non-additive set-functions
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Imprecise Probabilities/Partial Identification in a Nutshell

IP in a nutshell III: Typical Applications

direct modelling of partial knowledge: intervals of probabilities or
expectations

ordinal probabilities: p(A) ≤ p(B) ≤ p(C)...
indivisible evidence (“Bavarian or Austrian?”)

handling of different granularities: unique extensions from any
set-system to IP on the underlying measurable space

unobserved heterogeneity

decision making under ambiguity (Knightian uncertainty)

reliability analysis in engineering

robust statistics: “approximately true models”

modelling prior knowledge/ignorance

deficient, nay non-idealized, data (missingness, coarseness,
measurement error, misclassification,...)
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Model Imprecision

IP as a Superfluous Complication?

Naturally, every abstraction yields some kind of imprecision.

Is IP just a superfluous complication, invented by researchers who
have not understood the nature of scientific abstraction?
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Model Imprecision

The mantra of statistical modelling

Box & Draper (1987, Empirical Model Building and Response Surfaces, p. 424)

“Essentially, all models are wrong,

but some of them are useful”,

and sometimes dangerous.
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Model Imprecision

Assumptions may matter!
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Figure: Densities of the Normal(0,1) and the Cauchy(0,0.79) distribution.
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Model Imprecision

Assumptions may matter!

Consider sample mean X .

if X1, . . . ,Xn ∼ N(𝜇,1) (normally distributed), then

X̄ ∼ N(𝜇, 1
n
)

Learning from the sample, with increasing sample size variance of X
decreases.

if X1, . . . ,Xn ∼ 𝒞(𝜇,1) (Cauchy-distributed), then

X ∼ C(𝜇,1)

Distribution does not depend on n, no learning via sample mean
possible
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Model Imprecision

Assumptions may matter! Robustness

many optimal procedures show very bad properties under minimal
deviations from the ideal model

instead of f (x ⋃︀⋃︀𝜗): model “approximately f (x ⋃︀⋃︀𝜗)”, i.e. consider all
distributions “close to f (x ⋃︀⋃︀𝜗)”
→ neighbourhood models
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Model Imprecision

Neighborhood-Based Ideas in Machine Learning

classification trees: neighbourhood models help to avoid overfitting:
lower entropy (Abellan & Moral (2003, IJUFKBS), Strobl (2005,
ISIPTA))

extended in Fink (2018, Diss LMU), Fink (2018, Imptree:CRAN)

“cultivated random forests” for robust decision tree learning (Nalenz
& Augustin (2021a, preprint)):

replacing internal nodes with two types of ensemble modules that pool
together a set of decisions into a soft decision

option modules consisting of all reasonable variable choices at each
step of the induction process
robust split modules including all elements of a neighbourhood of an
optimal split-point as reasonable alternative split-points
Ð→ ensemble centred around a single tree structure

abstain from predictions when the uncertainty is too high
better interpretability without loosing much predictive power
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Model Imprecision

Neighborhood-Based Ideas in Machine Learning

connection between (imprecise) neighborhood models and ensemble
learning

Trained Tree Ensembles (Random Forests or Boosting) can often be
approximated by imprecise decision rule and tree models.

Often relatively simple imprecise model sufficient to capture the most
central pattern found by the full ensemble: “compressed rule
ensembles” (Nalenz & Augustin (2021b, under review))

Carries over the low prediction variance and smooth decision
boundaries, while being much more interpretable.
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Model Imprecision

A Quick Look at Bayesian Methods

Dominating branch based on Walley (1991, Chapman & Hall), Walley
(1996, J R STAT SOC B)

Relationship to Robust Bayesian Analysis

Now distinction between variability and indeterminism possible

Near ignorance priors

Proper handling of prior-data conflict: Augustin, Walter & Coolen
(2014, ITIP)

Generalizations of Bayes factors: Ebner, Schwaferts &, Augustin
(2019, ISIPTA), Schwaferts (2021, DissLMU)

Extended (imprecise) empirical Bayes methods: Augustin &
Schollmeyer (2021, Statistical Science)
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Model Imprecision

Near-Ignorance Priors

Any single prior distribution carries probabilistic information

Use generalized priors such that “regular” events in the parameter
space have probability (︀0; 1⌋︀.
“near-ignorance priors”

IDM, multinomial inference: Walley (1996, JRSSB)

exponential families: Banavoli & Zaffalon (2014, Statistics)

Gaussian processes: Mangili (2015, ISIPTA; 2017, IJAR)
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Model Imprecision

Prior-mean-RObust Bayesian Optimization (PROBO)

Bayesian optimization with Gaussian process priors

prior mean parameters have the highest influence on convergence
among all prior components

accounting for GP imprecision via a prior near-ignorance model

generalized lower confidence bound: imprecision-adjusted acquisition
function

Rodemann (2021, MSc.LMU), Rodemann & Augustin (TR, under
review)

promising extensions
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Model Imprecision
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Data Imprecision
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Data Imprecision

(Epistemic) Data Imprecision

Imprecise observations of something precise

missing data

non-response
missingness by treatment design
statistical matching, e.g. imprecise imputation: Endres, Fink &
Augustin (2020, J. Off. Stat.)

measurement error

beyond classical m.e. modelling: generalized score functions
data protection: Fink & Augustin (2017, ISIPTA)

coarse data

data merging with partially overlapping categories
secondary data analysis
refined responses of primary refusals, typically coarsening/missing not
at random: Plass, Cattaneo, Augustin, Schollmeyer & Heumann (2019,
Int. Stat. Rev)
forecasts derived from set-valued observations (see below)

AGMG Learning from Weakly Structured Information 43 / 65



Data Imprecision

Election Forecasting with Yet Undecided Voters

Project with the polling institute Civey, together with Dominik Kreiss

pre-election polling data for the 2021 German federal election

new questionnaire design: explicit collection of the consideration sets
(Oscarsson & Rosema (2019, Elect.Stud)) of yet undecided voters
(“Between which parties are you undecided?”)

valuable information far beyond “don’t know”:

typically indecisiveness only between (very) few parties
precise vote for all coalitions containing parties in the voter’s
consideration set

Kreiss & Augustin (2021, ArXiv), Kreiss & Augustin (2020, SUM),
Kreiss, Nalenz & Augustin (2020, ECML/PKDD-WUML)

builds on first ideas in Plass, Augustin, Cattaneo, Schollmeyer
(2015b, ISIPTA) and Plass (2018, DissLMU)

Couso & Dubois (2014, IJAR), Couso, Dubois & Sánchez (2014,
Springer)
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Data Imprecision

S set of parties standing for election
two levels of (generic) response variables

Y: consideration set, set l of preferred parties, observable
Y : final choice, party ℓ ∈ l, not observable
covariates X , realizations x

point estimator for percentage of votes a set A of parties achieves

⧹︂p(Y ∈ A) = ∑
(ℓ, l, x) ∈

A × 𝒫(S) × 𝒳

p(Y = ℓ ⋃︀Y = l,X = x)
)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂

latent transition
model

⋅ ⧹︂p(Y = l ⋃︀ X = x)
)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂

from data

⋅ ⧹︂p(X = x)
)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂
from data,
sampling
weights

results depend strongly on the unknown transition model

(p(Y = ℓ ⋃︀Y = l,X = x))
ℓ∈S ,l∈𝒫(S) ,

which is, however, unidentifiable without further assumptions.

For every l and x the transition model specifies a probability
distribution p(l,x) on (l,𝒫(l)).
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Data Imprecision
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Y : final choice, party ℓ ∈ l, not observable
covariates X , realizations x

point estimator for percentage of votes a set A of parties achieves

⧹︂p(Y ∈ A) = ∑
(ℓ, l, x) ∈

A × 𝒫(S) × 𝒳

p(Y = ℓ ⋃︀Y = l,X = x)
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latent transition
model

⋅ ⧹︂p(Y = l ⋃︀ X = x)
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from data

⋅ ⧹︂p(X = x)
)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂
from data,
sampling
weights

results depend strongly on the unknown transition model

(p(Y = ℓ ⋃︀Y = l,X = x))
ℓ∈S ,l∈𝒫(S) ,

which is, however, unidentifiable without further assumptions.

For every l and x the transition model specifies a probability
distribution p(l,x) on (l,𝒫(l)).
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latent transition
model

⋅ ⧹︂p(Y = l ⋃︀ X = x)
)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂

from data

⋅ ⧹︂p(X = x)
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from data,
sampling
weights

results depend strongly on the unknown transition model

(p(Y = ℓ ⋃︀Y = l,X = x))
ℓ∈S ,l∈𝒫(S) ,

which is, however, unidentifiable without further assumptions.

For every l and x the transition model specifies a probability
distribution p(l,x) on (l,𝒫(l)).
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Data Imprecision

“Modelling”

For the moment let’s argue without the covariates: p(l,x) ↪ p(l)
Thinking of a concrete example may be helpful; consider, e.g.,
l = {SPD,Left,Green}.
See above: results depend strongly on the unknown transition model.

Therefore, think of the forecast as a function of the transition model
underlying, i.e. consider

⧹︂p(Y ∈ A) [︀(pl)(l∈𝒫(S)) .⌉︀
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Data Imprecision

“Precise modelling”

Potential ideas to specify the latent transition model precisely:

prophetic: give exact numbers for (pl)(l∈𝒫(S))
transfer knowledge from polls of older elections

uniform (max ent)

p(Y = ℓ ⋃︀Y = l) ∶= 1

⋃︀l⋃︀
homogeneous with respect to the decided

p(Y = ℓ ⋃︀Y = l) ∶= p(Y = {ℓ})
∑ℓ′∈l p(Y = {ℓ′})

noninformativeness of coarsening (CAR: coarsening at random)
(indirect)

∀l ∈ 𝒫(S) ∶ ∀ℓ1, ℓ2 ∈ l ∶
p(Y = ℓ1⋃︀Y = l)
p(Y = ℓ2⋃︀Y = l)

= p(Y = ℓ1)
p(Y = ℓ2)
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Data Imprecision

Justification of these Assumptions
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Data Imprecision

Justification of these Assumptions

Assumptions specifying the transition
model have to be well-grounded in good
subject-matter arguments, derived from the
domain knowledge.

All the assumptions just stated (and many
more) are indistinguishable by relying on
the data only.

There CANNOT be any meaningful
statistical test to support/reject any of
these assumptions.

Relying on such assumptions just for the
sake of receiving (seemingly) precise
solutions is questionable.

7

7John William Waterhouse: The Crystal Ball (1902)
http://www.wikiart.org/en/john-william-waterhouse/the-crystal-ball-1902,Gemeinfrei, [Nov 27th, 2020]
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Data Imprecision

Enveloping all Possible Specifications of the Transition
Model

What do we know “for sure”?

Consider all possible specifications for

(p(Y = ℓ ⋃︀Y = l,X = x))
ℓ∈S ,l∈𝒫(S)

That is, consider for each l, the set of all probabilities on (l,𝒫(l)).

By assuming error-freeness of coarsening

p(Y ∈ A) ⋃︀Y = l,X = x)) =
)︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀]︀

0 l ⊆ AC

1 if l ⊆ A
(︀0; 1⌋︀ l ∩A ⇑= ∅ ∧ l ∩AC ⇑= ∅

AGMG Learning from Weakly Structured Information 50 / 65



Data Imprecision

Enveloping all Possible Specifications of the Transition
Model

What do we know “for sure”?

Consider all possible specifications for

(p(Y = ℓ ⋃︀Y = l,X = x))
ℓ∈S ,l∈𝒫(S)

That is, consider for each l, the set of all probabilities on (l,𝒫(l)).
By assuming error-freeness of coarsening

p(Y ∈ A) ⋃︀Y = l,X = x)) =
)︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀]︀

0 l ⊆ AC

1 if l ⊆ A
(︀0; 1⌋︀ l ∩A ⇑= ∅ ∧ l ∩AC ⇑= ∅

AGMG Learning from Weakly Structured Information 50 / 65



Data Imprecision

What has the Theory of Partial Identification to Offer
here?

Enveloping all scenarios: worst- and best case estimates

When weak, but well- supported information is available, utilize it to
increase precision!
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Data Imprecision

Enveloping all Possible Specifications of the Transition
Model (continued)

p(Y ∈ A) ⋃︀Y = l,X = x)) =
)︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀]︀

0 l ⊆ AC

1 if l ⊆ A
(︀0; 1⌋︀ l ∩A ⇑= ∅ ∧ l ∩AC ⇑= ∅

move probability mass around where not fixed

lower bound (“guarantee”):

P(Y ∈ A) = ∑
l⊆A

p(Y = l)

P(SPD,Gr,FDP) = p(SPD) + p(Gr) + p(FDP) + p(SPD,Gr) + p(SPD,FDP) + p(Gr,FDP) + p(SPD,Gr,FDP)

upper bound (“potential”):

P(Y ∈ A) = ∑
l∩A≠∅

p(Y = l) .

Construction goes back to Dempster (1967, Ann.Math.Stat) and
Shafer (1976, Princeton UP) in the context of fiducial inference and
modelling uncertain knowledge, respectively.
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Data Imprecision

Dempster Bounds

most cautious analysis:8 appropriate communication of full
uncertainty about transitions

Considerable increase in precision when coalitions are considered! For
instance, being undecided between SPD and Green is a precise vote
for any coalition containing these parties!
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8Figure is taken from Kreiss & Augustin (2021, Arxiv; p. 10)
AGMG Learning from Weakly Structured Information 53 / 65



Data Imprecision

Exploit Weak Knowledge about Transition Probabilities

weigh precision and credibility
communication of the uncertainty present
work with plausible weak assumptions not exploitable in traditional
statistics
expert opinions, like: “the undecided between Party I and Party II
tend as least as much to Party I than to Party II”
weaken “precise conditions” by considering neighborhood models
generalized uniform probability: between 50-c% and 50+c% for all
parties9

easy technical handling via linear optimization
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CDU/CSU/Green

CDU/CSU/Green/FDP

CDU/CSU/SPD

CDU/CSU/SPD/FDP

CDU/CSU/SPD/Green

SPD/Green

SPD/Green/FDP

SPD/Green/Left

0.00 0.25 0.50 0.75 1.00
Estimated Proportion of Seats

C
oa

lit
io

n

CDU/CSU/FDP/AFD

CDU/CSU/Green

CDU/CSU/Green/FDP

CDU/CSU/SPD

CDU/CSU/SPD/FDP

CDU/CSU/SPD/Green

SPD/Green

SPD/Green/FDP

SPD/Green/Left

0.00 0.25 0.50 0.75 1.00
Estimated Proportion of Seats

C
oa

lit
io

n

9Figure for c = 30 is taken from Kreiss & Augustin (2021, Arxiv; p. 10)
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Data Imprecision

Reliable inference instead of overprecision!!

Consequences to be drawn from the Law of Decreasing Credibility:

adding untenable assumptions to produce precise solution may
destroy credibility of statistical analysis, and therefore its relevance for
the subject matter questions.

make realistic assumptions and consider the set of all models that are
compatible with the data and these assumptions (and then add
successively additional assumptions, if desirable)

the results may be imprecise, but are more reliable

the extent of imprecision is related to data quality!

as a welcome by-product: clarification of the implication of certain
assumptions

often still sufficient to answer subjective matter question

“weak information” may be powerful in refining results
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Brief Tour d’Horizon Machine Learning

Machine Learning

neighborhood models for stability and interpretability (see above)

potential of near-ignorance models in Bayes-based methods

ensembles of dimension reduction-based clustering methods with
applications to single-cell data: Fuetterer, Augustin & Fuchs (2020,
ADAC), Fuetterer & Augustin (2021, MABM@IEEE BIBM)

Discriminative power Lasso: Fuetterer, Nalenz & Augustin (2021, TR)

power of credal classification (set-valued, predict several categories for
some hard to classify instances)

study effects of sample design on ML-methods

project with destatis
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Brief Tour d’Horizon Decision Theory

Decision Theory under with Imprecise Probabilities

Think more in terms of actions and their consequences!

Intensive interest in economics and mathematical philosophy, however
mostly data-free problems: Ellsberg paradoxes, bounded rationality

Optimization theoretic framework: Jansen, Schollmeyer & Augustin
(2017, ESQARU)

Degrees of E-admissibility: Jansen, Schollmeyer & Augustin (2022,
Seidenfeld Festschrift)

Guiding superstructure upon Bayesian inference in psychology
Schwaferts (2021, Diss LMU), e.g. Schwaferts & Augustin (2019/21,
ISIPTA)

great opportunities for data-based decision making

likelihood-based decision theory, e.g. Cattaneo (2013, Elec.J.Stat)

imprecise sampling models

explicit incorporation of sequentiality ↪? robust reinforcement
learning
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Brief Tour d’Horizon Decision Theory

Information Efficient Decision Making with Complexly
Structured Preferences

Beyond real-valued, externally given utility functions

Preference systems 𝒜 = (︀A,R1,R2⌋︀ with R1 ⊆ A ×A a pre-order on A
and R2 ⊆ R1 × R1 a pre-order on R1.

Interpretation of preference systems:

(a,b) ∈ R1: “a at least as desirable as b” (ordinal part)
((a,b), (c ,d)) ∈ R2: “exchanging b by a is at least as desirable as
exchanging d by c” (cardinal part)

Jansen, Blocher, Augustin & Schollmeyer (2021, IJAR min rev)

(I) Methods for eliciting 𝒜 by only asking ranking questions about R1.
(II) Data-driven guidance of elicitation with previous user experience.
(III) Utilizing elicitation methods for information efficient decision making

between acts X ∶ S → A taking values in A.
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Brief Tour d’Horizon Formal Concept Analysis

Partially Ordered Data and Data Depth

Partially ordered data, ontic interpretation of order

rather than on distances better to rely on data depth, measuring
centrality and outlyingness (e.g. Serfling & Zuo (2000; Ann.Statist.))

transform the existing properties for spatial depth functions into the
more general framework of formal concept analysis (Blocher &
Schollmeyer (2022), see below)

computational aspects (Blocher (2019, MSc.LMU))

computing depth functions,
sampling from a probability given by such a depth function
sampling a set given by a formal context or closure system
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Brief Tour d’Horizon Formal Concept Analysis

Formal Concept Analysis

Formal concept analysis (Ganter & Wille (2012, Springer)) in
statistics: data set consisting of observations and their attribute
values.

produce a hierarchy of concepts by representing the data set as a
family of subsets of the observations such that elements sharing the
same attributes are grouped together.

embedding into the frameworks of complete lattices and closure
systems.

powerful representation of non-standard data types, for instance

partial ranking data (e.g. preference systems) (see above)
observations with multi-type attributes such as numerical and spatial
combinations

VC-dimension and regularization in formal concept analysis
(Schollmeyer (2017, DissLMU))

descriptive analysis
test statistics based on suprema over families of sets
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Brief Tour d’Horizon Formal Concept Analysis
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Concluding Remarks

Concluding Remarks

Foundations of Statistics
and

Their Applications

learning from weakly structured information

generalized view of complex uncertainty

defensive handling of imprecision: robustification
active handling of imprecision opens new avenues

power of decision theoretic and order-theoretic concepts

many cross-sectoral topics and potential links

looking forward to discussions and co-operations
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Concluding Remarks
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