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Deep Learning = Alchemy? ...Safety?

„Ali Rahimi, a researcher in arti�cial intelligence (AI) at Google in San 

Francisco, California, took a swipe at his �eld last December—and 

received a 40-second ovation for it. Speaking at an AI conference, 

Rahimi charged that machine learning algorithms, in which 

computers learn through trial and error, have become a form 

of „alchemy."  Researchers, he said, do not know why some algo-

rithms work and others don't, nor do they have rigorous criteria 

for choosing one AI architecture over another....“ 

                                                                                                       Science, May 2018



Spectacular Success in Sciences



Impact on Mathematical Problem Settings

Some Examples:

I Inverse Probleme/Imaging Science (2012–)
; Denoising
; Edge Detection
; Inpainting
; Classification
; Superresolution
; Limited-Angle Computed Tomography
; ...

I Numerical Analysis of Partial Differential Equations (2017–)
; Black-Scholes PDE
; Allen-Cahn PDE
; Parametric PDEs
; ...

I Modelling (2018–)
; Learning of equations from data
; Learning of PDEs
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Deep Learning for Inverse Problems

Example: Limited-Angle Computed Tomography
A CT scanner samples the Radon transform

Rf (φ, s) =

∫
L(φ,s)

f (x)dS(x),

for L(φ, s) =
{
x ∈ R2 : x1 cos(φ) + x2 sin(φ) = s

}
, φ ∈ [−π/2, π/2), and s ∈ R.

Challenging inverse problem if Rf (·, s) is only sampled on [−φ, φ], φ < π/2

Learn the Invisible (Bubba, K, Lassas, März, Samek, Siltanen, Srinivan;
2019):

Step 1: Use model-based methods as far as possible

I Solve with sparse regularization using shearlets.

Step 2: Use data-driven methods where it is necessary

I Use a deep neural network to recover the missing components.

Step 3: Carefully combine both worlds

I Combine outcome of Step 1 and 2.
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Learn the Invisible (LtI)

Original

Filtered Backprojection Sparse Regularization with Shearlets

[Gu & Ye, 2017] Learn the Invisible (LtI)



Data-Driven Versus Model-Based Approaches?

Optimal balancing of
data-driven and model-based approaches!



Theoretical Foundations of Deep Learning



The Mathematics of Deep Neural Networks

Definition:
Assume the following notions:

I d ∈ N: Dimension of input layer.

I L: Number of layers.

I N: Number of neurons.

I ρ : R→ R: (Non-linear) function called activation function.

I T` : RN`−1 → RN` , ` = 1, . . . , L: Affine linear maps T`x = A`x + b`

Then Φ : Rd → RNL given by

Φ(x) = TLρ(TL−1ρ(. . . ρ(T1(x))), x ∈ Rd ,

is called (deep) neural network (DNN).



Training of Deep Neural Networks

High-Level Set Up:
I Samples (xi , f (xi ))mi=1 of a function

such as f :M→ {1, 2, . . . ,K}.

I Select an architecture of a deep neural network,
i.e., a choice of d , L, (N`)

L
`=1, and ρ.

Sometimes selected entries of the matrices (A`)
L
`=1,

i.e., weights, are set to zero at this point.

I Learn the affine-linear functions (T`)
L
`=1 = (A` ·+b`)

L
`=1 by

min
(A`,b`)`

m∑
i=1

L(Φ(A`,b`)`(xi ), f (xi )) + λR((A`, b`)`)

yielding the network Φ(A`,b`)` : Rd → RNL ,

Φ(A`,b`)`(x) = TLρ(TL−1ρ(. . . ρ(T1(x))).

This is often done by stochastic gradient descent.

Goal: Φ(A`,b`)` ≈ f
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Fundamental Questions concerning Deep Neural Networks

I Expressivity:
I How powerful is the network architecture?
I Can it indeed represent the correct functions?

; Applied Harmonic Analysis, Approximation Theory, ...

I Learning:
I Why does the current learning algorithm produce anything reasonable?
I What are good starting values?

; Differential Geometry, Optimal Control, Optimization, ...

I Generalization:
I Why do deep neural networks perform that well on data sets, which do

not belong to the input-output pairs from a training set?
I What impact has the depth of the network?

; Learning Theory, Statistics, ...

I Interpretability:
I Why did a trained deep neural network reach a certain decision?
I Which components of the input do contribute most?

; Information Theory, Uncertainty Quantification, ...
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Interpretability



General Problem Setting

Question:

I Given a trained neural network.

I We don’t know what the training data was nor how it was trained.

; Can we determine how it operates?

Opening the Black Box!

Why is this important?

I Assume a job application is rejected.

I Imagine this rejection was done by a neural network-based algorithm.

; The applicant wants to know the reasons!

Vision for the Future:

I Explanation of a decision indistinguishable from a human being!
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History of the Field

Previous Relevance Mapping Methods:

I Gradient based methods:

I Sensitivity Analysis (Baehrens, Schroeter, Harmeling, Kawanabe, Hansen,
Müller, 2010)

I SmoothGrad (Smilkov, Thorat, Kim, Viégas, Wattenberg, 2017)

I Backwards propagation based methods:

I Guided Backprop (Springenberg, Dosovitskiy, Brox, Riedmiller, 2015)
I Layer-wise Relevance Propagation (Bach, Binder, Montavon, Klauschen,

Müller, Samek, 2015)
I Deep Taylor (Montavon, Samek, Müller, 2018)

I Surrogate model based methods:

I LIME (Local Interpretable Model-agnostic Explanations) (Ribeiro, Singh,
Guestrin, 2016)

I Game theoretic methods:

I Shapley values (Shapley, 1953), (Kononenko, Štrumbelj, 2010)
I SHAP (Shapley Additive Explanations) (Lundberg, Lee, 2017)
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Sensitivity Analysis

Definition:
Assume the network Φ is continuously differentiable. Then, given an input
x ∈ Rn, the sensitivity analysis assigns the relevance score(

∂Φ(x)

∂xp

)2

to each pixel p ∈ R.

Remark:

I Sensitivity analysis only uses ∇Φ, but not the decision Φ(x). It
answers the question ”Changing which pixels makes the image look
less/more like a cat?”, but not ”Which pixels make the image a cat?”.



Idea of LRP

Illustration:



Numerical Experiment for Sensitivity versus LRP

(Source: Samek; 2018)



Towards a More Mathematical Understanding



What is Relevance?

Main Goal: We aim to understand decisions of “black-box” predictors!

map for digit 3 map for digit 8

Classification as a Classical Task for Neural Networks:
I Which features are most relevant for the decision?

I Treat every pixel separately
I Consider combinations of pixels
I Incorporate additional knowledge

I How certain is the decision?



Tasks for Today

Challenges:

I What exactly is relevance in a mathematical sense?
; Rigorous definition of relevance by information theory.

I What is a good relevance map?
; Formulation of interpretability as optimization problem.

I How to compare different relevance maps?
; Canonical framework for comparison.

I How to extend to challenging modalities?
; Conceptually general and flexible interpretability approach.
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The Relevance Mapping Problem

The Setting: Let

I Φ: [0, 1]d → [0, 1] be a classification function,

I x ∈ [0, 1]d be an input signal.

Φ(x) = 0.97 “Monkey”
Φ

Φ(x) = 0.07 “Not a monkey”
Φ



The Relevance Mapping Problem

The Task:

I Determine the most relevant components of x for the prediction Φ(x).

I Choose S ⊆ {1, . . . , d} of components that are considered relevant.

I S should be small (usually not everything is relevant).

I Sc is considered non-relevant.

Original image x Relevant components S Non-relevant components Sc



Rate-Distortion Viewpoint

Alice Bob

Original image x Partial image S Random completion y

Φ(x) = 0.97

“Monkey”

Φ(y) = 0.91

“Monkey”

Obfuscation: Let

I n ∼ V be a random noise vector, and

I y be a random vector defined as yS = xS and ySc = nSc .



Rate-Distortion Viewpoint

Recall: Let

I Φ: [0, 1]d → [0, 1] be a classification function,

I x ∈ [0, 1]d be an input signal,

I n ∼ V be a random noise vector, and

I y be a random vector defined as yS = xS and ySc = nSc .

Expected Distortion:

D(S) = D(Φ, x , S) = E
[

1

2
(Φ(x)− Φ(y))2

]
Rate-Distortion Function:

R(ε) = min
S⊆{1,...,d}

{|S | : D(S) ≤ ε}

; Use this viewpoint for the definition of a relevance map!



Finding a minimizer of R(ε)

or even approximating it is very hard!



Hardness Results

Boolean Functions as ReLU Neural Networks:
Φ(x1, x2, x3)

∨

∧

x1 x2

¬

x3

+1

+1

−1 +1

x1 x2 x3

+1 +1 −1

−1 −1

−1

−%

[−1 −1
]
%

[1 1 0
0 0 −1

] x1
x2
x3

 +

[
−1
1

] + 1

 + 1

ReLU activation function %(x) = max{0, x}

The Binary Setting: Let

I Φ: {0, 1}d → {0, 1} be classifier functions,

I x ∈ {0, 1}d be signals, and

I V = U({0, 1}d) be a uniform distribution.



Hardness Results

Boolean Functions as ReLU Neural Networks:
Φ(x1, x2, x3)

∨

∧

x1 x2

¬

x3

+1

+1

−1 +1

x1 x2 x3

+1 +1 −1

−1 −1

−1

−%

[−1 −1
]
%

[1 1 0
0 0 −1

] x1
x2
x3

 +

[
−1
1

] + 1

 + 1

ReLU activation function %(x) = max{0, x}

The Binary Setting: Let

I Φ: {0, 1}d → {0, 1} be classifier functions,

I x ∈ {0, 1}d be signals, and

I V = U({0, 1}d) be a uniform distribution.



Hardness Results

We consider the binary case.

Theorem (Wäldchen, Macdonald, Hauch, K, 2021):
Given Φ, x , k ∈ {1, . . . , d}, and ε < 1

4 . Deciding whether R(ε) ≤ k is

NPPP-complete.

Finding a minimizer of R(ε) is hard!

Theorem (Wäldchen, Macdonald, Hauch, K, 2021):
Given Φ, x , and α ∈ (0, 1). Approximating R(ε) to within a factor of d1−α

is NP-hard.

Even the approximation problem of it is hard!
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What is NPPP?

The Complexity Class NPPP:
Many important problems in artificial intelligence belong to this class.

Some Examples:

I Planning under uncertainties

I Finding maximum a-posteriori
configurations in graphical
models

I Maximizing utility functions in
Bayesian networks

Agent

Plan

Nature

Random Behaviour

Success Probability



Our Method:

Rate-Distortion Explanation (RDE)



RDE (Macdonald, Wäldchen, Hauch, K, 2020)

Problem Relaxation:

Discrete problem Continuous problem

Relevant set S ⊆ {1, . . . , d}

s ∈ [0, 1]d

Obfuscation yS = xS , ySc = nSc

y = s � x + (1− s)� n

Distortion D(S)

D(s)

Rate/Size |S |

‖s‖1

Resulting Minimization Problem:

minimize D(s) + λ‖s‖1 subject to s ∈ [0, 1]d
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Observations

Distortion:

D(s) = E
[

1

2
(Φ(x)− Φ(y))2

]
=

1

2
(Φ(x)− E [Φ(y)])2 +

1

2
cov [Φ(y)]

Obfuscation:

E [y ] = s � x + (1− s)� E [n]

cov [y ] = diag(1− s) cov [n] diag(1− s)



Observations

E [y ] , cov [y ] E [Φ(y)] , cov [Φ(y)]
Φ

Generic Approach:

I Estimate using sample mean and sample covariance

I Possible for any classifier function Φ

I Might require large number of samples

Neural Network Approach:

I Use compositional structure of Φ

I Propagate distribution through the layers

I Project to simple family of distributions at each layer
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Assumed Density Filtering

Input distribution: N (µin, σin)



Assumed Density Filtering

Affine transform: N (Wµin + b,WσinW
T )



Assumed Density Filtering

ReLU activation: Not Gaussian anymore



Assumed Density Filtering

Moment matching output distribution: N (µout, σout)



Numerical Experiments



MNIST Experiment

Data Set

Image size 28× 28× 1
Number of classes 10
Training samples 50000

Test accuracy: 99.1%

input

convolution

5× 5× 1× 32

average pooling

2× 2

convolution

5× 5× 32× 64

average pooling

2× 2

convolution

5× 5× 64× 64

average pooling

2× 2

flatten

fully connected

576× 1024

fully connected

1024× 10

softmax

output

28× 28× 1

28× 28× 32

14× 14× 32

14× 14× 64

7× 7× 64

7× 7× 64

3× 3× 64

576

1024

10

10

MNIST dataset of handwritten digits (LeCun, Cortes, 1998)



MNIST Experiment

image SmoothGrad LRP-α-β SHAP RDE (diagonal)

Sensitivity Guided Backprop Deep Taylor LIME RDE (low-rank)

SmoothGrad (Smilkov, Thorat, Kim, Viégas, Wattenberg, 2017), Layer-wise Relevance Propagation (Bach, Binder, Montavon, Klauschen, Müller, Samek, 2015), SHAP (Lundberg, Lee, 2017),

Sensitivity Analysis (Simonyan, Vedaldi, Zisserman, 2013), Guided Backprop (Springenberg, Dosovitskiy, Brox, Riedmiller, 2015), Deep Taylor Decompositions (Montavon, Samek, Müller,

2018), LIME (Ribeiro, Singh, Guestrin, 2016)



MNIST Experiment
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SmoothGrad (Smilkov, Thorat, Kim, Viégas, Wattenberg, 2017), Layer-wise Relevance Propagation (Bach, Binder, Montavon, Klauschen, Müller, Samek, 2015), SHAP (Lundberg, Lee, 2017),

Sensitivity Analysis (Simonyan, Vedaldi, Zisserman, 2013), Guided Backprop (Springenberg, Dosovitskiy, Brox, Riedmiller, 2015), Deep Taylor Decompositions (Montavon, Samek, Müller,

2018), LIME (Ribeiro, Singh, Guestrin, 2016)



STL-10 Experiment

Data Set

Image size 96× 96× 3
(224× 224× 3)

Number of classes 10
Training samples 4000

Test accuracy: 93.5%

(VGG-16 convolutions pretrained on Imagenet)

input

convolution

3× 3× 3× 64

convolution

3× 3× 64× 64

average pooling

2× 2

convolution

3× 3× 64× 128

conv

3× 3× 128× 128

average pool

2× 2

convolution

3× 3× 128× 256

convolution

3× 3× 256× 256

convolution

3× 3× 256× 256

average pool

2× 2

convolution

3× 3× 256× 512

convolution

3× 3× 512× 512

convolution

3× 3× 512× 512

average pool

2× 2

convolution

3× 3× 512× 512

convolution

3× 3× 512× 512

convolution

3× 3× 512× 512

average pool

2× 2

flatten

fully connected

25088× 4096

fully connected

4096× 4096

fully connected

4096× 10

softmax

output

224× 224× 3

224× 224× 64

224× 224× 64

112× 112× 64

112× 112× 128

112× 112× 128

56× 56× 128

56× 56× 256

56× 56× 256

56× 56× 256

28× 28× 256

28× 28× 512

28× 28× 512

28× 28× 512

28× 28× 512

14× 14× 512

14× 14× 512

14× 14× 512

14× 14× 512

7× 7× 512

25088

4096

4096

10

10

STL-10 dataset (Coates, Lee, Ng, 2011), VGG-16 network (Simonyan, Zisserman, 2014)



STL-10 Experiment

image SmoothGrad LRP-α-β SHAP RDE (diagonal)

Sensitivity Guided Backprop Deep Taylor LIME RDE (low-rank)

SmoothGrad (Smilkov, Thorat, Kim, Viégas, Wattenberg, 2017), Layer-wise Relevance Propagation (Bach, Binder, Montavon, Klauschen, Müller, Samek, 2015), SHAP (Lundberg, Lee, 2017),

Sensitivity Analysis (Simonyan, Vedaldi, Zisserman, 2013), Guided Backprop (Springenberg, Dosovitskiy, Brox, Riedmiller, 2015), Deep Taylor Decompositions (Montavon, Samek, Müller,

2018), LIME (Ribeiro, Singh, Guestrin, 2016)



STL-10 Experiment
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SmoothGrad (Smilkov, Thorat, Kim, Viégas, Wattenberg, 2017), Layer-wise Relevance Propagation (Bach, Binder, Montavon, Klauschen, Müller, Samek, 2015), SHAP (Lundberg, Lee, 2017),

Sensitivity Analysis (Simonyan, Vedaldi, Zisserman, 2013), Guided Backprop (Springenberg, Dosovitskiy, Brox, Riedmiller, 2015), Deep Taylor Decompositions (Montavon, Samek, Müller,

2018), LIME (Ribeiro, Singh, Guestrin, 2016)



Interpretable Machine Learning

for Challenging Modalities



Desiderata

Problems:

I Modifying the image with random noise or some background color
might lead to the obfuscation not being in the domain of the network.
; Does this give meaningful information about why the network

made its decisions?

I The explanations are pixel-based.
; Does this lead to useful information for

different modalities?

Goal:

I Take the conditional data distribution into account!

I Ensure that specifics of various modalities can be handled!
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Obfuscating Correctly

Recall for s ∈ [0, 1]d :

D(s) = Ey∼Υs

[
1

2
(Φ(x)− Φ(y))2

]

How do we obfuscate according to the conditional data distribution?

Generative Transform (Chang,Creager,Goldenberg,Duvenaud;’19):

I Let D be the training data distribution.

I Use an inpainting network G so that a critic has trouble deciding
whether the obfuscation

y := x � s + G (x , s, n)� (1− s)

came from D.

; Sampling from the conditional data distribution D|ys=xs .
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General Approach (Heiß, Levie, Resnick, K, Bruna; ’20)

Optimization Problem:
We consider the following minimization problem:

min
s∈{0,1}d

Ey∼Υs

[
1

2
(Φ(x)− Φ(y))2

]
+ λ‖s‖1,

where y is generated by a trained inpainting network G as

y := x � s + G (x , s, n)� (1− s).

Requirements of Different Modalities: Can be applied ...

I ... to images, but also audio data, etc.

I ... after a transform (e.g. a dictionary) to allow more complex
features.

Conceptually general and flexible interpretability approach!
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Audio Processing

NSynth Dataset:

Instrument Magnitude Phase
Importance Importance

Organ 0.829 1.0
Guitar 0.0 0.999
Flute 0.092 1.0
Bass 1.0 1.0
Reed 0.136 1.0
Vocal 1.0 1.0
Mallet 0.005 0.217
Brass 0.999 1.0
Keyboard 0.003 1.0
String 1.0 0.0



Telecommunication

RadioUNet (Levie, Cagkan, K, Caire; 2020):

Estimated map Explanation



Conclusions



What to take Home...?

Deep Learning:

I A theoretical foundation of neural networks is largely missing:
Expressivity, Learning, Generalization, and Interpretability.

I Deep neural networks act still as a black box.

Interpretability:

I Determining which input features are most relevant for a decision.

I We provide a precise mathematical notion for relevance based on
rate-distortion theory.

I Computing the minimal rate is hard.

I We introduce a general and flexible interpretability
approach for various modalities, based on a relaxed version.

I On classical examples, outperforms current methods for smaller
rates.
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